Fundamental Symmetries & Neutrinos: The Theoretical Effort

M.J. Ramsey-Musolf ** *U Mass Amherst*

http://www.physics.umass.edu/acfi/

DNP Town Meeting, Chicago September 2014 In collaboration with V. Cirigliano, G. Fuller, & W. Haxton

Goals for this talk

- Articulate the vital role played by theory in advancing the fundamental symmetries & neutrinos program
- Describe the workforce context
- Identify needs & opportunities for the next decade
- Provide recommendations, scale of resources required, and anticipated outcomes

Outline

- I. Nuclear theory for fundamental symmetries & neutrinos
- II. The workforce context
- III. Needs & opportunities
- IV. Recommendations, resources, outcomes

EDM searches:

BSM CPV, Origin of Matter

 $0\nu\beta\beta$ decay searches:

Nature of neutrino, Lepton number violation, Origin of Matter

Electron & muon prop's & interactions:

SM Precision Tests, BSM "diagnostic" probes

Radioactive decays & other tests

EDM searches:

BSM CPV, Origin of Matter

 $0\nu\beta\beta$ decay searches:

Nature of neutrino, Lepton number violation, Origin of Matter

- Reliably computing nuclear matrix elements
- Identifying benchmark sensitivities in BSM scenarios (heavy vs. light LNV)
- Analyzing associated pheno: oscillation studies, direct mass measurements, other LNV searches (LHC...), astro...

ioactive decays & other

EDM searches:

BSM CPV, Origin of Matter

analyzing pheno (LHC, flavor,...)Developing refined baryon asymmetry

 $0\nu\beta\beta$ decay searches:

Nature of neutrino, Lepton

number violation, Origin of

Computing EDMs in BSM scenarios &

Developing refined baryon asymmetry calc's & relating to EDM parameters

• Identifying benchmark sensitivities

- Computing hadronic & nuclear matrix elements $(d_n, g_{\pi}^{(i)})$ Schiff moment...)
- Carrying out refined few-body calculations (future program)

Electron & muon prop's interactions:

EDM searches:

BSM CPV, Origin of Matte

- Carrying out reliable SM predictions: HLBL in g_{μ} -2, radiative corrections in PVES, HT/CSV,...
- Identifying benchmark sensitivities in BSM scenarios
- Analyzing associated pheno: LHC, neutrino m.m....
- Developing new experimental directions: PREX/CREX, LFV at EIC,...

Electron & muon prop's & interactions:

SM Precision Tests, BSM "diagnostic" probes

Radioactive decays & other tests

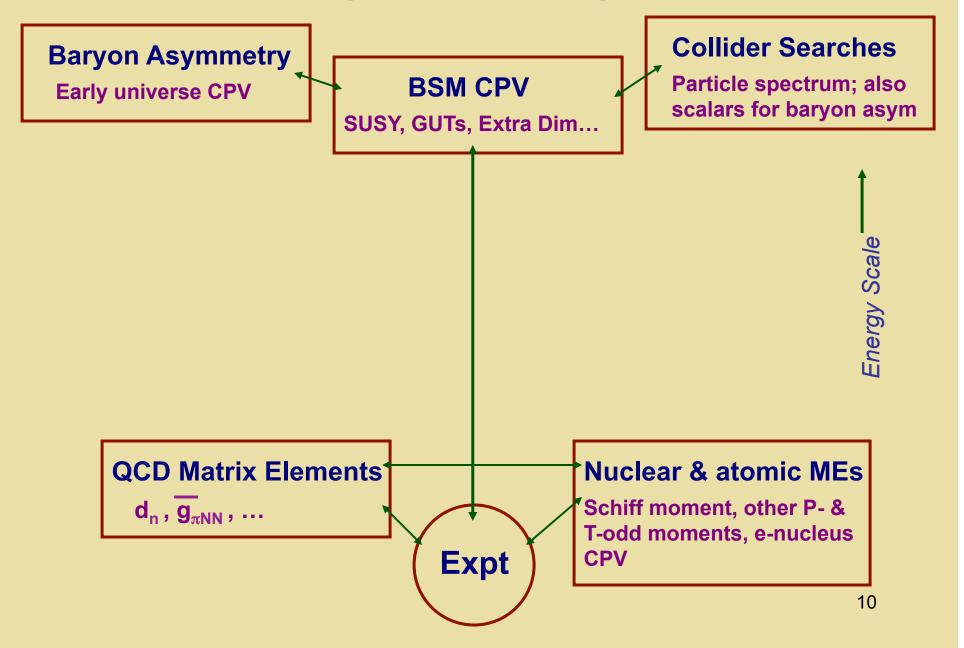
- Carrying out reliable SM predictions: radiative corrections neutron & nuclear decay, nuclear corrections, hadronic form factors, recoil corrections, nuclear response in DM direct detection,...
- Identifying benchmark sensitivities in BSM scenarios
- Developing tools for neutrino transport
- Analyzing associated pheno: LHC, pp chain, BBN, "dark forces",...
- Few-body and hadronic computations for hadronic PV
- Developing new experimental directions: neutron-antineutron oscillations, "dark boson" searches...

interactions:

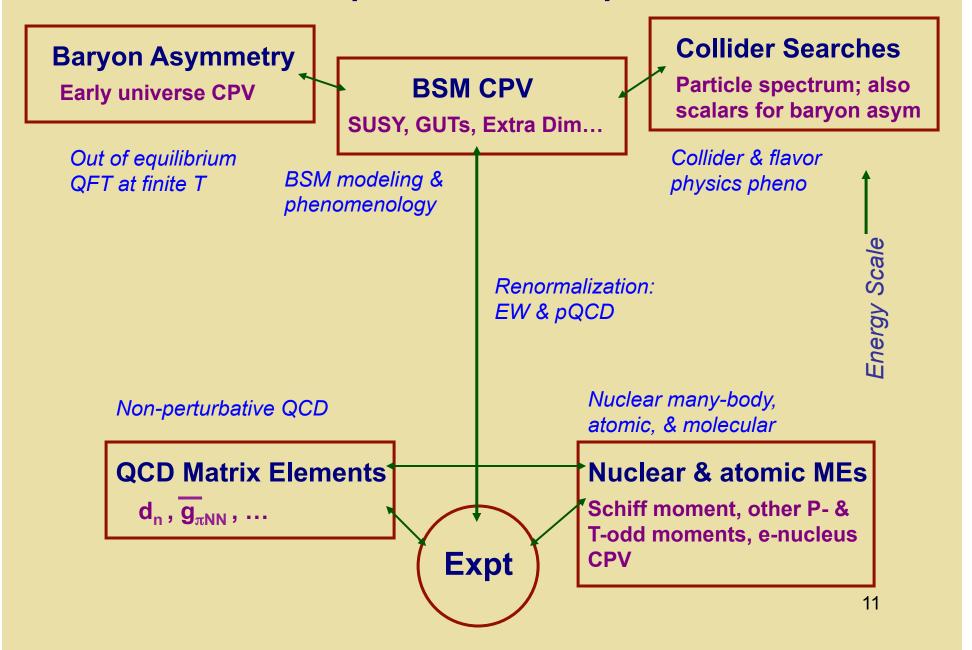
SM Precision Tests, BSM "diagnostic" probes

bnents

 $N \beta \beta$ decay searches:


Nature of neutrino, Lepton number violation, Origin of Matter

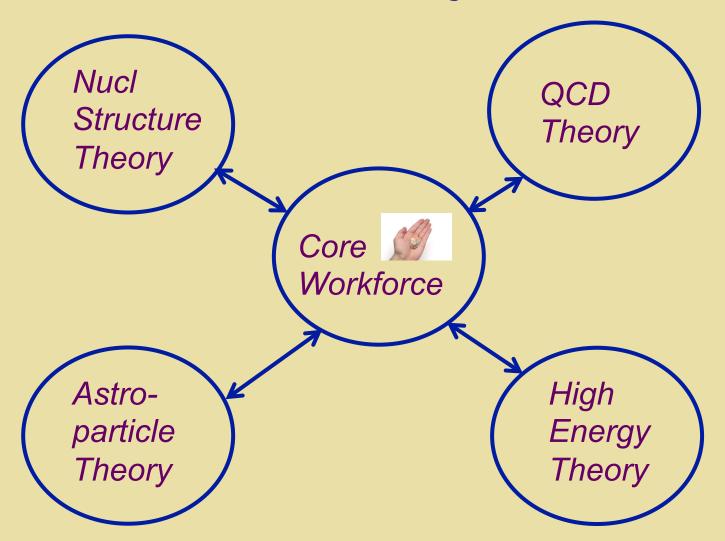
Radioactive decays & other tests

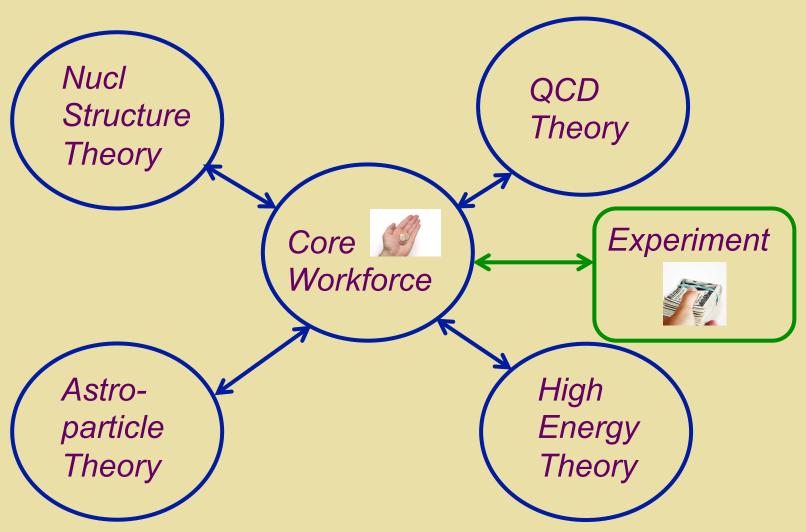

FS & N Expertise Needed

- ♦ Illustrate: EDM problem
- ♦ Similar for other key problems

EDM Interpretation & Multiple Scales

EDM Interpretation & Multiple Scales


Challenges

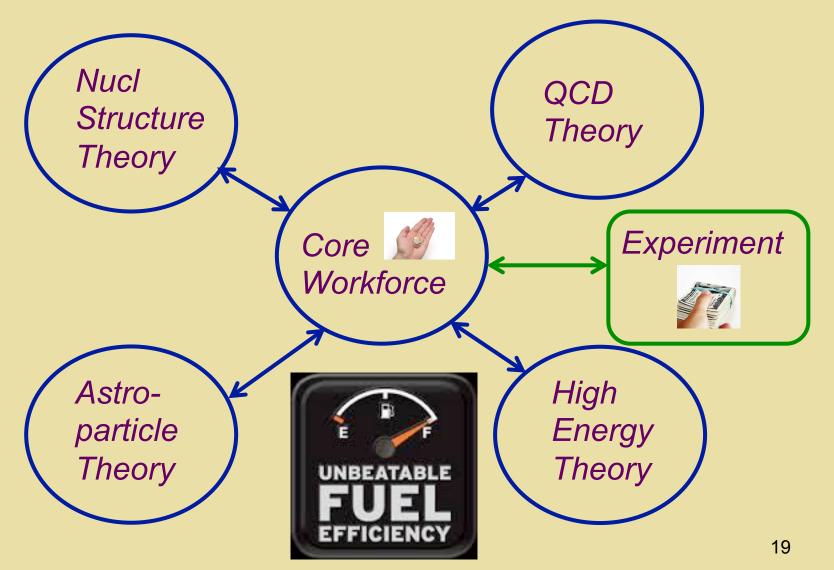


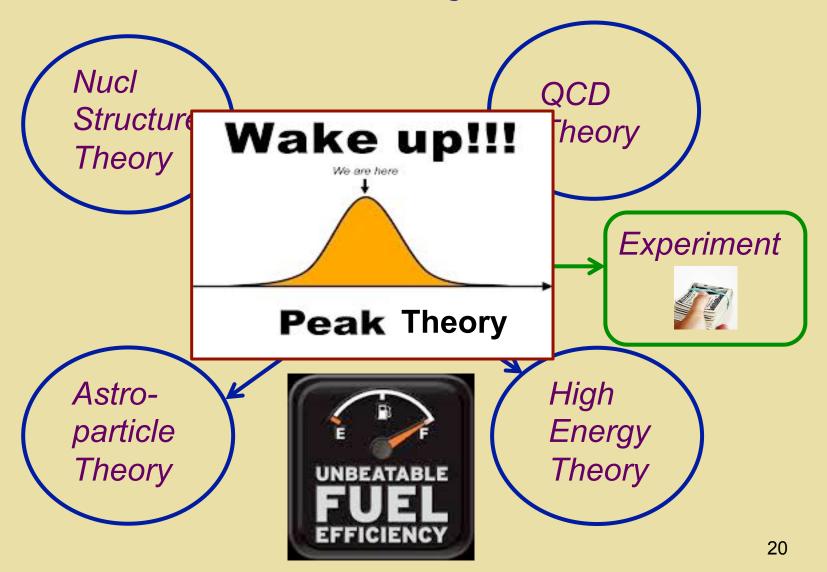
Challenges

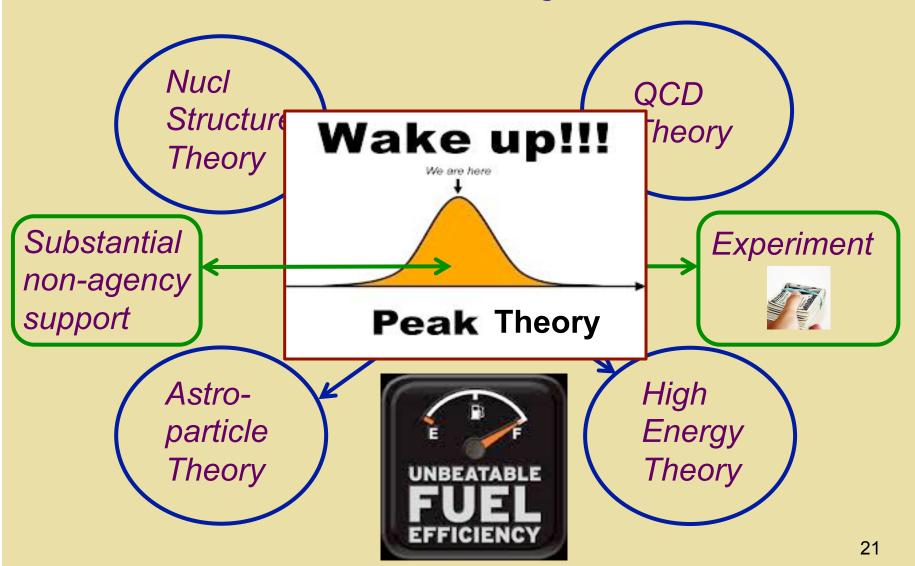
FS & N Theory Effort: DOE

Research Effort	Funding (\$M)	Faculty & Res Scientist FTE	Postdoc FTE	Grad Student FTE
Experimental Neutrino	14.1	28	22	21
Experimental Neutron	5.2	16	7	8
Experimental Other	2.7	10	7	11
TOTAL EXP	22.0	53	36	40
+ JLAB PV				→
TOTAL Theory	2.0	11.4	2.5	15

(Th'y) / (Exp) < 10% < 20% < 7% < 40%


FS & N Exp + Thy: < 15% total DOE NP research budget FS Thy: < 7% total DOE nuclear theory budget


Thanks: V. Cianciolo


FS & N Theory Effort: DOE

Research Effort	Funding (\$M)	Faculty & Res Scientist FTE	Postdoc FTE	Grad Student FTE
Experimental Neutrino	14.1	28	22	21
Experimental Neutron	5.2	16	7	8
Experimental Other	2.7	10	7	11
TOTAL EXP	22.0	53	36	40
+ JLAB PV				→
TOTAL Theory	2.0	11.4	2.5	15
(Th'y) / (Exp)	< 10%	< 20%	< 7 %	< 40%

FS & N Exp + Thy: < 15% total DOE NP research budget FS Thy: < 7% total DOE nuclear theory budget Career op's ?!

FS & N Theory Effort: Needs

- Grow the core workforce to address key open problems
- Enhanced resources to facilitate collaborations between core and related areas
- Enhanced resources & "focal point" to facilitate theory-experiment collaboration in light of growing & ambitious experimental effort

FS & N Theory Effort: Rec's

- Support for a five-year topical collaboration targeted to fundamental symmetries & neutrinos
- Support for a national center to facilitate theoretical collaborations with related areas and theory-experiment interactions
- Support for a realistic nuclear theory-wide computational physics initiative that addresses FS & N large scale computational needs

FS & N Theory Effort: Resources

- Five-year topical collaboration: \$2.5 \$3 m or \$500-\$600k/yr
- National center: ~ \$300k/yr
- Realistic nuclear theory-wide computational physics initiative: see D. Richards talk

FS & N Theory Effort: Anticipated Outcomes

♦ A sampling: additional community input welcome!

EDM searches:

BSM CPV, Origin of Matter

 $0\nu\beta\beta$ decay searches:

Nature of neutrino, Lepton number violation, Origin of Matter

- Robust nuclear matrix element computations (light v_M & heavy LNV)
- Comprehensive phenomenology for disentangling mechanism

adioactive decays & other sts

SM Precision Tests, BSM "diagnostic" probes

EDM searches:

BSM CPV, Origin of Matter

 $0\nu\beta\beta$ decay searches:

Nature of neutrino, Lepton number violation, Origin of

- Robust hadronic matrix element computations
- Refined nuclear Schiff moment computations
- Robust solution to the quantum transport problem for baryogenesis

Electron & muon prop's interactions:

SM Precision Tests, BSM "diagnostic" probes

EDM searches:

BSM CPV, Origin of Matter

 $0\nu\beta\beta$ decay searches:

Nature of neutrino, Lepton

- Reduced uncertainty in HLBL for g_{μ} -2 (lattice, dispersion relations...)
- Two-loop EW radiative corrections for PVES

Electron & muon prop's & interactions:

SM Precision Tests, BSM "diagnostic" probes

Radioactive decays & other tests

EDM searches:

 $0\nu\beta\beta$ decay searches:

- Reduced hadronic uncertainty in EW corrections for β-decay
- Robust hadronic form factors for CKM unitarity tests & correlation studies
- Lattice & few-body calculations for hadronic PV

ture of neutrino, Lepton mber violation, Origin of atter

Electron & muon prop's & interactions:

SM Precision Tests, BSM "diagnostic" probes

Radioactive decays & other tests

FS & N Theory Effort: Rec's

- Support for a five-year topical collaboration targeted to fundamental symmetries & neutrinos
- Support for a national center to facilitate theoretical collaborations with related areas and theory-experiment interactions
- Support for a realistic nuclear theory-wide computational physics initiative that addresses FS & N large scale computational needs