Hadronic Parity Violation: Experiment

Nadia Fomin
University of Tennessee

Fundamental Symmetries, Neutrinos, Neutrons and related Nuclear Astrophysics Long-Range Plan Town Meeting

September 29, 2014
Summary

Completed or Ready to run:

- $\vec{n} + p \rightarrow d + \gamma$ *(final analysis)*
- $\vec{n} + ^3\text{He} \rightarrow ^3\text{H} + p$ *(ready to commission)*
- Neutron Spin Rotation III *(upgrade in progress)*
- Francium anapole *(ongoing)*

Next step in HWI studies: PV Deuteron photo-disintegration

Probing Time Reversal Invariance via Hadronic PV:
feasibility studies, determination of systematic effects

Hadronic Weak Interaction

- Natural scale $\sim 10^{-7}$, set by relative size of meson vs boson exchange amplitudes
- Weak interaction at low momentum transfer between nucleons is accessible through measurements of small parity-odd amplitudes

Theoretical Frameworks

- DDH
- EFT
- Lattice QCD
Hadronic Weak Interaction – Theory

1. **DDH model** – uses valence quarks to calculate effective PV meson-nucleon coupling directly from SM via weak meson coupling constants

\[h_\pi^1, h_\rho^0, h_\rho^1, h_\rho^1, h_\rho^2, h_\omega^0, h_\omega^1 \]

- Observables can be written as their combinations

\[A = a_\pi^1 h_\pi^1 + a_\rho^0 h_\rho^0 + a_\rho^1 h_\rho^1 + a_\rho^2 h_\rho^2 + a_\omega^0 h_\omega^0 + a_\omega^1 h_\omega^1 \]

2. **Effective Field Theory**

- comprehensive formulation by Holstein, Ramsey-Musolf, van Kolck, Zhu and Maekawa
- model-independent, consistent treatment of PC and PV interactions, theoretical error estimates
- NN potentials are expressed in terms of several parameters whose linear combinations give us 5/6 (pionless/chiral) low energy coupling constants

3. **Lattice QCD**
Example: \(n+p \rightarrow d + \gamma \) (isolates \(\Delta I=1 \))

1. **DDH model**

\[
A = -0.11h^1_\pi + 0.001h^1_\rho + 0.004h^1_\omega
\]

Reasonable range: \(-11 < h^1_\pi < 0 \times 10^{-7}\) \(\Rightarrow h^1_\pi \approx 4.5 \times 10^{-7}\)

2. **Effective Field Theory**

\[
A_\gamma = \frac{4}{3\sqrt{\pi}} \frac{M^{\frac{3}{2}}}{\kappa_1 (1 - \gamma a^{(1S_0)})} g^{(3S_1 - 3P_1)}
\]

3. **Lattice QCD**

\[
h^1_{\pi NN} = 1.099 \pm 0.505^{+0.058}_{-0.064} \times 10^{-7}
\]

-- J. Wasem, PRC C85 (2012)
Experimental Reach

Weak NN iso-scalar, iso-vector DDH coupling subspace

- $h^0_{\rho} + 0.7 h^0_{\omega}$

- $f_x - 0.12 h^1_{\rho} - 0.18 h^1_{\omega}$

- pp 13.6 & 45 MeV
- $p - \alpha$
- F, γ
- $np \rightarrow dy$ proposed $\pm 1 \times 10^{-3}$
- NSR proposed $\pm 1 \times 10^{-7}$
- $n - ^3He$ proposed $\pm 2 \times 10^{-7}$
- LQCD
During the next decade, a program of few-body, hadronic PV experiments using polarized neutrons at the FNPB and elsewhere will provide data that can be interpreted with ab initio, few-body calculations and effective field theory methods to yield the lowest-order “primordial” PV nuclear interaction.

Among the scientific priorities:

III. Completion of the NPDGamma experiment to obtain a precision measurement of the weak isovector nucleon – nucleon pion coupling constant.
NPDGamma data taking completed in June 2014
The NPDGamma collaboration – 15+ years

P. Alonzi3, R. Alacron4, R. Allen4, S. Balascuta1, L. Barron-Palos2, S. Baeßler3,4, A. Barzilov25, D. Blyth4, J.D. Bowman4, M. Bychkov3, J.R. Calarco9, R.D. Carlini5, W.C. Chen6, T.E. Chupp7, C. Crawford8, K. Craycraft8, M. Dabaghyan9, D. Evans3, N. Fomin10, S.J. Freedman13, E. Frlež3, J. Fry11, T.R. Gentile6, M.T. Gericke14, R.C. Gillis11, K. Grammer12, G.L. Greene4,12, J. Hamblen26, F. W. Hersman9, T. Ino15, G.L. Jones16, S. Kucucker12, B. Lauss17, W. Lee18, M. Leuschner11, W. Losowski11, E. Martin8, R. Mahurin14, M. McCrea14, Y. Masuda15, J. Mei11, G.S. Mitchell19, P. Mueller4, S. Muto15, M. Musgrave12, H. Nann11, I. Novikov25, S. Page14, D. Počanči3, S.I. Penttila4, D. Ramsay14,20, A. Salas Bacci10, S. Santra21, P.-N. Seo3, E. Sharapov23, M. Sharma7, T. Smith24, W. M. Snow11, Z. Tang11, W. S. Wilburn10, V. Yuan10

1Arizona State University
2Universidad Nacional Autonoma de Mexico
3University of Virginia
4Oak Ridge National Laboratory
5Thomas Jefferson National Laboratory
6National Institute of Standards and Technology
7University of Michigan, Ann Arbor
8University of Kentucky
9University of New Hampshire
10Los Alamos National Laboratory
11Indiana University
12University of Tennessee
13University of California at Berkeley
14University of Manitoba, Canada
15High Energy Accelerator Research Organization (KEK), Japan

16Hamilton College
17Paul Scherrer Institute, Switzerland
18Spallation Neutron Source
19University of California at Davis
20TRIUMF, Canada
21Bhabha Atomic Research Center, India
22Duke University
23Joint Institute of Nuclear Research, Dubna, Russia
24University of Dayton
25Western Kentucky University
26University of Tennessee at Chattanooga

\textbf{This work is supported by}
\textbf{DOE and NSF (USA)}
\textbf{NSERC (CANADA)}
\textbf{CONACYT (MEXICO)}
\textbf{BARC (INDIA)}
The NPDGamma collaboration – 15+ years

8 PhDs at LANL

4 PhDs at SNS

4 PhDs in progress
Final results coming very soon

Two independent analyses

\[\vec{s}_n \cdot \vec{k}_\gamma \]

- Two independent analyses

\[\frac{d\sigma}{d\Omega} \propto \frac{1}{4\pi} (1 + A_\gamma \cos \theta) \]

\[dA \leq 1.3 \times 10^{-8} \]
$$n + ^3He \rightarrow ^3H+p$$

$$A_p \approx \langle \vec{\sigma}_n \cdot \vec{k}_p \rangle$$

$$\frac{d\sigma}{d\Omega} \approx \frac{\sigma_0}{4\pi} (1 + A_p \cos\theta)$$

Currently commissioning on the FnPB at the SNS

GOAL: $dA \sim 1.6 \times 10^{-8}$
DDH:

\[A = -0.185h_\pi^1 - 0.038h_\rho^0 + 0.023h_\rho^1 - 0.001h_\rho^2 - 0.050h_\omega^0 - 0.023h_\omega^1 \]

EFT:

\[A \sim a g_{(\Delta I=1)}^{(1S_0^3P_0)} + a' g_{(\Delta I=3)}^{(3S_1^3P_1)} + b g_{(\Delta I=0)}^{(1S_0^3P_0)} + b' g_{(\Delta I=1)}^{(3S_1^3P_1)} + c g_{(\Delta I=2)}^{(1S_0^3P_0)} \]

\[(a \approx a') > (b \approx b') > c\]
Cold neutrons are polarized in the y direction traveling in the z direction. They interact with the 4He over a length, l. The neutron spin gains $\phi_{PC} + \phi_{PV}$ and passes through the supermirror analyzer where the neutrons are detected. Accumulated phase differences between opposite helicity states cause transversely-polarized neutrons to corkscrew as they propagate through target.
PV Spin Rotation in 4He

DDH:
\[\phi_{PV} = -0.97h_\pi^1 - 0.32h_\rho^0 + 0.11h_\rho^1 - 0.22h_\omega^0 + 0.22h_\omega^1 \]

EFT:
5-body calculation!

NSR II
\[\frac{d\phi_{PV}}{dz} = [1.7 \pm 9.1 \,(stat) \pm 1.4 \,(sys)] \times 10^{-7} \, \text{rad/m} \]

NSR III - projected
\[\frac{d\phi_{PV}}{dz} \leq 1.0 \times 10^{-7} \]
Hadronic parity violation

M.W. Ahmed,1,* J.D. Bowman,2,† C. Crawford,3,‡ N. Fomin,4,§ H. Gao,5,¶ M.T. Gericke,6,** V. Gudkov,7,†† B.R. Holstein,8,‡‡ C.R. Howell,5, §§ P. Huffman,9,¶¶ W. van Oers,10,*** S. Penttilä,2,††† M.R. Schindler,7,‡‡‡ W.M. Snow, §§§11, ¶¶¶ and Y.K. Wu5,

1NC-Central Univ., Durham, NC
2Oak Ridge National Laboratory, Oak Ridge, TN
3University of Kentucky, Lexington, KY
4University of Tennessee, Knoxville, TN
5Duke University, Durham, NC
6University of Manitoba, Winnipeg, Manitoba, Canada
7University of South Carolina, Columbia, SC
8University of Massachusetts, Amherst, MA
9NC-State University, Raleigh, NC
10TRIUMF, Vancouver, BC, Canada
11Indiana University/CEEM, Bloomington, IN

Hadronic parity violation probes both the neutral-current nonleptonic weak interactions and non-perturbative strong dynamics. The current and projected availability of high-intensity neutron and photon sources and continuing developments in theoretical methods provide the opportunity to greatly expand our understanding of hadronic parity violation in few-nucleon systems. The current status of these efforts and future plans are discussed.
Asymmetry A^L_γ in $\gamma d \rightarrow np$ at leading order

- Leading-order asymmetry at threshold

\[
A^L_\gamma = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} = -2 \sqrt{\frac{2}{\pi}} \frac{M^2_\gamma}{\kappa_1} \left(1 - \gamma a^{1S_0} \right) \left[\left(1 - \frac{2}{3} \gamma a^{1S_0} \right) g^{(3S_1-1P_1)} + \frac{\gamma a^{1S_0}}{3} \left(g^{(1S_0-3P_0)}(\Delta I=0) - 2g^{(1S_0-3P_0)}(\Delta I=2) \right) \right],
\]

- Helicity-dependent asymmetry
 Detect either the n or p (neutron is easier)

- Information independent of and complementary to
 $\bar{n}p \rightarrow d\gamma$

J. Vanasse and M.R. Schindler, nucl-th/ 1404.0658

Schindler, Springer (2009); Vanasse, Schindler (2014)
Where to measure?

- A_L^γ max at threshold \Rightarrow low count rate
- Simplified figure of merit $(A_L^\gamma)^2 \times \sigma(\gamma d \rightarrow np)$

- $E_{\gamma} = 2.30$ MeV
- $\sigma = 600$ μb
- $A \sim 4 \times 10^{-7}$ (DDH adjusted)

Maximized for $\omega \approx [2.259, 2.264]$ MeV

Vanasse, Schindler (2014)
Need to observe $\sim 10^{16}$ γs to be sensitive to a 10^{-8} asymmetry

- The target will be liquid deuterium with thickness of about 67% attenuation of the γ-ray beam
- The neutron can be moderated in the liquid deuterium target, escape with low energy (~10 meV), and be detected efficiently in current mode in a $^3\text{He}/^4\text{He}$ ion chamber
- The transmitted and scattered γs can be measured using current-mode γ detectors located behind the $^3\text{He}/^4\text{He}$ ion chamber
- Cylindrical symmetry of detector array to help suppress possible systematic errors
Features of HIgS2 (optimized for parity-violation measurements of g-ray induced reactions)

- g-ray beam produced by Compton-back scattering of electron bunches circulating in a storage ring from photons in a Fabry-Pérot optical cavity pumped with a high-powered external laser;
- Total g-ray beam flux = 10^{11} to 10^{12} g/s (~x1000 larger than HIgS) in energy range of 2 to 12 MeV;
- Circular beam polarization with magnitude > 95% and fast reversal of polarization direction using well established methods;
- Precision control and diagnostics of beam phase space; and
- Beam energy resolution selected by collimation.
Hadronic Parity Violation in Many Body Systems
FrPNC collaboration:
TRIUMF - Maryland - Manitoba
San Luis Potosi - William & Mary
Shanxi - Stony Brook - New South Wales

Goal: Weak interaction physics studies through parity non-conservation measurements in Fr:
- Nuclear spin dependent → anapole moment; hadronic influence.
- Nuclear spin independent → Standard model tests.

Sep 2012: Commissioning run (1)
- Fr laser trapping demonstrated
- Isotopes 209, 207*, 221

Nov 2012: Commissioning run (2),
- Hyperfine anomalies and isotope shifts in isotopes 209, 207, 213*, 206* in preparation for FrPNC.
 * not previously trapped

Supported by NSF and DOE from the United States, NRC, NSEC, and TRIUMF from Canada, and CONACYT from Mexico.
A Search of Time Reversal Violation
TREX Experiment

Observable is a triple correlation

\[\vec{\sigma}_n \cdot (\vec{k}_n \times \vec{I}) \]

At SNS

\[\Delta A_{PT} = 6 \times 10^{-6} \]
A Search of Time Reversal Violation in Neutron Scattering - TREX Experiment

- Search of TR violation in compound nuclear resonances by transmitting polarized neutrons through a polarized target \(^2,^3\)
- Observable is the \(P\)-odd \(T\)-odd triple correlation \(\vec{\sigma}_n \cdot (\vec{k}_n \times \vec{I})\)
- Expected \(10^6\) enhancements in \(\mathcal{F}\) observables by complex nuclear structure\(^3\)
- \(10^2\)-\(10^4\) discovery potential for improvement of the current limits on TRIV interaction obtained from the EDM experiments\(^4\).
- Sensitivity of the TRex is given by \(\lambda\) parameter

\[
\lambda_{PT} = \frac{\delta \sigma_{PT}}{\delta \sigma_P}
\]

<table>
<thead>
<tr>
<th>Model</th>
<th>(\lambda_{PT})</th>
</tr>
</thead>
<tbody>
<tr>
<td>CKM (\delta) phase</td>
<td>(\leq 10^{-10})</td>
</tr>
<tr>
<td>Left-right symmetry</td>
<td>(\leq 4 \times 10^{-3})</td>
</tr>
<tr>
<td>Horizontal symmetry</td>
<td>(\leq 10^{-5})</td>
</tr>
<tr>
<td>Charged Higgs bosons</td>
<td>(\leq 2 \times 10^{-6})</td>
</tr>
<tr>
<td>Neutral Higgs bosons</td>
<td>(\leq 3 \times 10^{-4})</td>
</tr>
<tr>
<td>(\theta) QCD</td>
<td>(\leq 5 \times 10^{-5})</td>
</tr>
<tr>
<td>nEDM (single-loop)</td>
<td>(\leq 4 \times 10^{-3})</td>
</tr>
<tr>
<td>Atomic EDM ((^{199}\text{Hg}))</td>
<td>(\leq 2 \times 10^{-3})</td>
</tr>
</tbody>
</table>

Time-reversal Tests in Nuclear and Hadronic Processes
Thursday, November 6, 2014 - 8:45am to Saturday, November 8, 2014 - 5:00pm
Lederle Graduate Research Tower (LGRT) 419B, UMass Amherst

The workshop will address opportunities for tests of time-reversal invariance in neutron-nucleus interactions and weak decays as well as the related tests of C-invariance in rare eta decays. The program will focus on the relationship with tests of time-reversal invariance with electric dipole moment searches, methods for computing the hadronic and nuclear matrix elements, and experimental opportunities.

Co-organizers:
Liping Gan (U. North Carolina Wilmington)
Vladimir Gudkov (U. South Carolina)
Sean Tulin (York U.)
Completed or Ready to run:

- $\vec{n} + p \rightarrow d + \gamma$ (final analysis)
- $\vec{n} + ^3\text{He} \rightarrow ^3\text{H} + p$ (ready to commission)
- Neutron Spin Rotation III (upgrade in progress)
- Francium anapole (ongoing)

Next step in HWI studies: PV Deuteron photo-disintegration

Strong community support

Probing Time Reversal Invariance via Hadronic PV:

feasibility studies, determination of systematic effects